
Reuse-Centric K-Means Configuration
Hui Guan, Yufei Ding, Xipeng Shen, Hamid Krim

North Carolina State University, Raleigh, NC, USA 27519
{hguan2, yding8, xshen5, ahk}@ncsu.edu

Abstract—K-means configuration is a time-consuming process
due to the iterative nature of k-means. This paper proposes
reuse-centric k-means configuration to accelerate k-means con-
figuration. It is based on the observation that the explorations of
different configurations share lots of common or similar compu-
tations. Effectively reusing the computations from prior trials of
different configurations could largely shorten the configuration
time. The paper presents a set of novel techniques to materialize
the idea, including reuse-based filtering, center reuse, and a two-
phase design to capitalize on the reuse opportunities on three
levels: validation, k, and feature sets. Experiments show that
our approach can accelerate some common configuration tuning
methods by 5-9X.

I. INTRODUCTION

The effectiveness of k-means in applications depends on
many factors, such as the features used for clustering and the
resulting number of clusters. As a result, algorithm configura-
tion is essential for k-means–based data mining [1]. However,
k-means configuration is a time-consuming process due to the
iterative nature of k-means and the requirement of many runs
of k-means in various settings.

There are some general methods proposed for speeding up
the configuration process of algorithms [2]. They have mostly
focused on how to reduce the number of trial configurations.
How to accelerate the examination of the remaining configura-
tions through historical information reuse is a complementary
direction that has not received sufficient explorations. And
how to effectively accomplish it for k-means is yet a largely
unexplored problem.

This paper presents a systematic exploration in that direc-
tion. It introduces the concept of reuse-centric k-means config-
uration, which promotes information reuse across the explo-
rations of different configurations of k-means. The motivating
observation is that the explorations of different configurations
of k-means share lots of common and similar computations.
Effectively reusing the computations could largely cut the
configuration time.

Specifically, we have designed two techniques, called reuse-
based filtering and center reuse, to promote computation reuse
across trials of different configurations. Reuse-based filtering
takes advantage of the clusters and the distance between a
point and its nearest center unveiled in a previous trial of k-
means. Through the reuse, it is able to use computationally
efficient lower bounds of the distances between a point and
potential centers to filter out some centers that are unlikely to
be the nearest to a point, and avoid calculating the distances
to those centers. Center reuse is to use the clustering results of
some earlier trials to initialize cluster centers for some later

trials on different configurations. The reuse helps make the
later trials converge faster and hence saves configuration time.

For both types of reuse, we have explored the opportunities
in multiple levels: across validations, across k, and across
feature sets. Besides their effectiveness in drastically cutting
configuration time, an appealing property of these techniques
is their simplicity. They are designed to be simple to imple-
ment and deploy to ensure their applicability in general data
mining applications.

In addition to the two techniques, we have also explored
the use of a two-phase design to speed up the configuration
process when a full error surface is needed for meeting various
desired trade-offs among multiple quality metrics.

We evaluate the efficiency and effectiveness of these tech-
niques in both sequential and parallel settings. Our results
show that these techniques can work together in synergy,
speeding up a heuristic search-based configuration process by
up to 5.8X and the attainment of the error surface of k-means–
based classifiers by a factor of 9.1. We also confirm only little
disparity the proposed techniques may cause to the quality of
k-means results.

II. PROPOSED TECHNIQUES

We describe, in this section, our proposed techniques. In k-
means–based applications, data are first projected onto some
feature space. K-means clustering subsequently runs on the
projected data to form some clusters, which are then used
by the application for some follow-up purposes (e.g., classi-
fication). We consider two important factors of k-means to
configure: S, the set of features to extract or select from the
raw data, and k, the number of clusters to form. Although
the configuration involves only two factors, even with the fast
Yinyang k-means algorithm [3], on a dataset of modest size,
the configuration still takes a long time (days) to explore all
combinations of k and feature sets.

Our acceleration techniques consist of three stages: reuse-
based filtering, center reuse, and a two-phase design. They
work at different aspects of the problem and can function
in synergy. The dash-lined boxes in Figure 1 illustrate the
scopes they each work on. We next explain each of the three
techniques in detail.

A. Reuse-Based Filtering

In the standard k-means, each iteration needs to compute
n×k distances (n is the number of points, k is the number of
cluster centers), from every data point to every cluster center
in order to identify which cluster center is the closest to the



Fig. 1: The overview of the acceleration techniques.

Fig. 2: Illustration of how the configuration with k = k1 can
help save distance computation in the first iteration of another
configuration with k = k2. b′(x) is the closest center of point
x when k = k1; c1, c2, c3 are the initial centers and b(x) is
the so-far nearest center of point x when k = k2.

data point. Modern k-means algorithms (e.g., Yingyang k-
means [3]) successfully avoid many distance calculations in
later iterations of a k-means, but they all still need the n× k
distance calculations in the first iteration of k-means. In our
experiments, we observe that the first iteration weights up to
40% of the entire k-means time. We call it the first iteration
problem. K-means configuration needs many runs of k-means;
every one of them suffers from the first iteration problem.

To alleviate the issue, we propose reuse-based filtering,
which is based on the well-known geometric property of
Triangle Inequality (TI). We explain the design of reuse-based
filtering in two levels: across k and across feature sets.

Reuse across k happens among the configurations that share
the same set of features, with different k values. Figure 2
provides the illustration. Note that the distance from x to b′(x)
can be directly reused from the trial with k = k1, the only
extra distance computations we need to carry out are those
from the centers in k = k1 to the initial centers in k = k2.
In total, there are k1 × k2 distance computations, which is
negligible in comparison to the cost of distance computations
from every point to every center (i.e. n × k2), where n is
the total number of points. Similarly to the previous usage of
TI [3], [4], this optimization does not change clustering results
as distance computations to some center c will be eliminated
only when c can not be the closest center to the point x.

Reuse across feature sets happens among the configurations
that have the same number of clusters k, but use different
sets of features. A distance computed in dimension space F1

with a feature set S1 can be used for bound computations in

dimension space F2 with a feature set S2 without affecting
clustering results as long as S2 is a subset of S1. In particular,
for each center c′F1 obtained in dimension space F1, we re-
move those dimensions that are not used in F2 to build a corre-
sponding center c′F2 in dimension space F2. The upper bound
ub(x, b(x)) is the same as Figure 2 while the lower bound
becomes lb(xF2 , cF2) = d(b′(x)F2 , cF2)− d(xF1 , b′(x)F1)

B. Center Reuse

The second technique we propose for accelerating k-means
configuration is called center reuse. The basic idea is to use
the cluster centers attained in the exploration of some earlier
configuration as the initial centers for the explorations of
later configurations. Specifically, we consider center reuse in
three scenarios, corresponding to the different levels of the
explorations of k-means configurations shown in Figure 1.

Reuse across validations is among the different folds in
cross validations in the exploration of a certain configuration.
Reuse across k happens among the configurations that share
the same set of features, but different k values. Suppose that
the reuse is from one configuration with k = k1 to another
with k = k2. If k2 > k1, in addition to using the centers
attained in exploring the earlier configuration, we add k2−k1
randomly generated centers as needed. If k2 < k1, we cluster
the k1 centers into k2 groups and then take the group centers as
the initial centers for the exploration of the latter configuration.
Reuse across feature sets happens among the configurations
that use different sets of features. Suppose that the reuse is
from configuration C1 with feature set S1 to configuration
C2 with feature set S2. Our design is to reuse the values
of overlapped features between S1 and S2, and generate the
values of the other features of S2 (if there are any). The
generated value can be the mean value of each feature.

When two configurations differ in both k and feature sets,
center reuse first applies the reuse across feature sets to handle
the dimension differences in the features, and then applies the
reuse across k to set the initial cluster centers.

C. Two-Phase Design

The two-phase design is based on the observation that some
points on an error surface more critically affect the accuracy
of the error surface than some other points do. The idea of
the two-phase design is to first quickly obtain an estimated
shape of the error surface, based on which, it then conducts a
focused exploration of the configurations (e.g., those fall into
the elbow area) that are most important for the accuracy of
the final error surface.

The first phase employs both the reuse-based filtering and
center reuse for speed. It also adopts two approximation meth-
ods. The first is to use only the first fold of cross-validation; the
second is to replace k-means clustering with only a one-step
clustering. The one-step clustering assigns points to clusters
based on their distances to the centers produced from our
center reuse scheme; no center updates or point reassignments
are done. Based on that shape of curve, the second phase
identifies the critical sections (i.e., the elbow section [5]) of



TABLE I: Data Statistics.
Dataset size(B) n #attr #c #d dstep kstep

gamma 1.2e6 1.9e4 10 2 8 1 10
sensorless 4.4e6 5.8e4 49 11 10 1 10
credit [6] 3.0e6 3.0e4 24 2 13 1 10
gassensor [7] 1.7e6 1.4e4 11 2 16 1 10
miniboone 3.4e7 1.3e5 50 2 34 2 20
adult 2.0e7 4.5e4 14 2 59 2 10
connect 3.1e7 6.8e4 42 2 61 2 10
activity [8] 1.1e7 1.0e5 561 6 157 8 10
census 2.0e8 1.4e5 68 2 186 8 20

TABLE II: Speedup on Stochastic Hill Climbing.

Dataset time(s)* reuse-based
filtering

center reuse
across
validations

across k and
feature sets

gamma 2808.1 3.09 3.58 2.05
sensorless 10730.6 3.22 3.40 1.73
credit 5713.5 3.30 4.05 2.04
gassensor 1901.9 4.37 4.39 2.33
miniboone 56636.8 1.56 3.73 1.83
adult 9904.4 4.30 5.80 2.18
connect 23621.7 1.54 4.42 1.63
activity 6569.6 1.11 2.76 1.91
census 79872.7 2.30 4.14 1.68
* time(s) refers to k-means clustering time in seconds for all 200

configurations without our optimizations.

the curve and selects some important configurations to conduct
more focused and detailed explorations to subsequently get the
precise accuracy at those points. Through interpolation across
those points, it finally obtains the error curve.

III. EVALUATIONS

We conduct a series of experiments to evaluate the proposed
techniques on both speedups and clustering quality. Our exper-
iments use k-means–based classification as a concrete usage
scenario of k-means configurations. It is worth noting that the
techniques are general, applicable to other usage of k-means.

All the experiments run on an HPE Apollo 2000 server
with two Intel Haswell CPUs (14 cores/CPU, 2.3-3.3GHz)
and 128GB RAM. We use nine large, real-world data sets
taken from the UCI machine learning repository [9]. The
statistics of the datasets including data size (size), the number
of instances (n), the number of attributes (#attr) and the
number of classes (#c) are listed in Table I. We used principal
component analysis (PCA) as the feature projection method
to extract features from attributes and adopted the step-wise
feature selection method to select feature sets. We retained a
maximum number of components that cumulatively explain
99% of variation. The minimum number of dimensions is two
and the smallest value of k is 20. The overall range of feature
dimensions to consider in the configuration explorations is
shown in the “#d” column. “dstep” and “kstep” columns show
the default step size to increase or decrease the dimension and
the number of clusters k respectively.

The state-of-the-art k-means algorithm Yinyang k-means [3]
is used in the baseline implementations of the algorithm con-
figuration. Euclidean distance is used in all the experiments.

A. Speedups on Heuristic Search

This part reports the speedups brought to the k-means
configuration process by our reuse-based filtering and center

reuse. Algorithm configurations typically employ some heuris-
tic search algorithms to explore the configuration space. Our
optimizations are largely orthogonal to what search algorithms
are used. Our experiments use stochastic hill climbing [10].

The tuning objective considers both the classification accu-
racy and the response time of the built classifier. Specifically, it
is to find the smallest k (hence giving the fastest classification
response) that can achieve a classification accuracy over a
given threshold (e.g. 90%). The stopping criterion is that the
maximum number of configurations (200) is tested.

The speedups from each technique are listed in Table II. For
reuse-based filtering, we report the speedup of reuse-based
filtering for the first iteration. The speedup comes from the
distance computation saved by TI-based filtering. Center reuse
affects the entire k-means clustering and thus has the dominant
influence on the overall speedup. It confirms that our simple
design for center reuse across k and features sets works well.

B. Speedup on the Attainment of Error Surfaces

Our second experiment studies the benefits of our tech-
niques on the attainment of classification error surfaces. As
Section II-C has mentioned, error surfaces capture the relations
between configurations and the errors of the corresponding
classifiers. They could be helpful when the criterion for the
best configuration varies. In this experiment, we apply all three
techniques that Section II proposes to accelerate the attainment
of the error surfaces. Uniform search of the configuration
space is used in the baseline implementation. It evaluates every
combination of the uniformly sampled d and k values.

Our proposed method is to use two-phase design to reduce
the number of k to be evaluated for building a classification
error curve. Computation reuse techniques are applied to
save the clustering time for each sampled configuration. Our
method starts with the largest d and the largest k and apply
reuse to smaller d values and k values. We apply all the three
techniques to speed up sequential uniform search, and then
parallel uniform search on the 28-core parallel machine.

1) Sequential: In this setting, only one thread is used for the
configuration process. The number of sampled k is 8, 16, 32.
The speedups from all three techniques are listed in Table III.
With our two-phase design, we could reduce the number of k
to be evaluated for recovering the error curve without affecting
the benefits from the computation reuse. As a consequence, the
overall speedup is up to 9.17X.

The overall speedup on the dataset activity is not as high as
on the other datasets. Specifically, the dominated acceleration
factor, center reuse across validations, produces a smaller
speedup compared with that on the other datasets. In contrast,
the results from the dataset census, which has the same large
dimensions but about 14 times larger data size, shows much
larger speedups for reuse-based filtering and center reuse
across all three levels. This is because when a dataset is
relatively small but has a large size of feature sets, training
sets are likely to follow different distributions and thus the
centers resulting from one fold of training set is not as good
for another fold of training set.



TABLE III: Speedup on the Attainment of Error Surfaces.

Dataset
Speedup by Computation Reuse (#k=32) Percentage of k Saving Overall Speedup
reuse-based filtering center reuse two-phase design #k=8 #k=16 #k=32
across k across

feature sets
across
validations across k

across
feature sets #k=8 #k=16 #k=32

gamma 3.42 3.12 4.81 2.78 1.44 11.51% 29.52% 16.81% 4.57 6.30 5.70
sensorless 3.61 3.80 4.50 2.37 1.59 21.41% 31.00% 24.21% 5.34 6.73 6.94
credit 3.65 3.70 5.31 2.81 1.82 6.69% 23.82% 15.09% 4.98 6.64 6.77
gassensor 4.31 4.34 5.75 3.32 3.19 26.54% 38.77% 11.95% 6.54 8.59 6.74
miniboone 1.91 1.97 4.56 2.57 2.02 3.85% 49.24% 48.98% 4.50 8.24 9.17
adult 4.65 5.05 6.43 3.86 3.88 12.99% 24.64% 22.71% 6.76 8.27 9.07
connect 1.59 1.74 4.13 2.91 2.28 11.19% 13.88% 5.89% 4.58 5.07 4.98
activity 1.21 1.23 2.77 1.84 2.07 15.25% 17.36% 13.79% 3.02 3.49 3.34
census 2.71 2.78 4.89 2.63 2.61 16.57% 33.12% 28.91% 5.34 7.32 7.64

TABLE IV: Speedup in Parallel Settings.

Dataset #threads Speedup
#k=5 #k=10 #k=20 #k=30

credit

2
4
8
16

3.73
3.96
3.71
3.69

4.01
4.49
4.40
4.02

4.77
4.89
4.60
4.30

5.12
5.08
4.88
4.75

adult

2
4
8
16

5.65
5.48
4.87
2.41

6.01
5.32
5.64
3.06

6.45
5.98
6.06
5.77

6.68
6.67
6.31
5.94

2) Parallel: The parallel results are interesting to examine
because our techniques, especially the computation reuses,
bring data dependences to the exploration of different con-
figurations: for a configuration to reuse results from another,
it has to wait for the results to be produced. They hence could
hamper the parallel search.

Table IV presents results of our algorithms in parallel
settings when the two computation reuse techniques are ap-
plied. Results on two datasets are shown due to the space
constraint. In order to run our algorithms in parallel, some
dependencies incurred by the computation reuse have to be
removed. When scheduling the task to each thread, we use
the following strategy to break dependencies: if the number
of threads supported is no larger than the number of feature
sets to be evaluated, then only remove dependencies caused
by reuse across feature sets. Each thread examines a subset of
feature sets and the entire sampled k values. To balance the
workload among the threads, we assign each thread feature sets
in an alternating manner. For example, if the dimensions are
from two to five and the number of threads is two, then the first
thread runs dimensions two and four while the second thread
runs dimensions three and five. When the thread supported
is larger than the number of feature sets, some dependencies
caused by reuse across k are also removed in the same way.

As shown in Table IV, we have good speedups with
various numbers of threads and numbers of sampled k. The
larger the number of sampled k is, the larger the speedup is.
This is because we have a larger ratio of reusable distance
computation for a larger set of sampled k.

C. Quality Influence of Center Reuse

Among all the three optimizations we introduce, only center
reuse might affect the clustering quality due to the sensitivity
of k-means on initial centers. To evaluate the quality influence

of center reuse, we perform 100 runs of k-means–based clas-
sification with different random seeds for each configuration
and take the average. We use Mean Percent Error (MPE) to
measure the discrepancy between values of an external met-
ric (classification error) and internal metrics (Davies-Bouldin
index, Dunn index, Silhouette coefficient and within-cluster
sum of squares (WCSS)) with our center reuse technique and
those without the optimization. Experiment results show that
the MPEs are lower than 3% for external metrics and 5% for
internal metrics, indicating the little influence of center reuse
on classification and clustering quality.

IV. CONCLUSION

In this work, we introduced the concept of reuse-centric
k-means configurations to promote information reuse across
the explorations of different configurations of k-means. Our
computation-reuse promotion techniques, reuse-based filtering
and center reuse, could largely cut the configuration time of
k-means–based data classification. We also introduced a two-
phase design, which when working in synergy with the other
two techniques, reduces the uniform-search–based attainment
of classification error surfaces by a factor of 9.

REFERENCES

[1] A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering
method for estimating the number of clusters,” in Advances in neural
information processing systems.

[2] Holger H. Hoos, Automated Algorithm Configuration and Parameter
Tuning. (Edited by Y. Hamadi etc.) Springer Berlin Heidelberg, 2012.

[3] Y. Ding, Y. Zhao, X. Shen, M. Musuvathi, and T. Mytkowicz, “Yinyang
k-means: A drop-in replacement of the classic k-means with consistent
speedup,” in Proceedings of the 32nd International Conference on
Machine Learning (ICML-15).

[4] C. Elkan, “Using the triangle inequality to accelerate k-means,” in ICML.
[5] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a” kneedle”

in a haystack: Detecting knee points in system behavior,” in Distributed
Computing Systems Workshops (ICDCSW), 2011 31st International
Conference on. IEEE, 2011, pp. 166–171.

[6] I.-C. Yeh and C.-h. Lien, “The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card
clients,” Expert Systems with Applications.

[7] R. Huerta, T. Mosqueiro, J. Fonollosa, N. F. Rulkov, and I. Rodriguez-
Lujan, “Online decorrelation of humidity and temperature in chemical
sensors for continuous monitoring,” Chemometrics and Intelligent Lab-
oratory Systems.

[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.” in
ESANN, 2013.

[9] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[10] S. Russel and P. Norvig, “Artificial intelligence: A modern approach,

2010,” EUA: Prentice Hall.


